Chip Fotonik Ultracepat Membentuk Kembali Pemrosesan Sinyal

- Redaksi

Rabu, 6 Maret 2024

facebook twitter whatsapp telegram line copy

URL berhasil dicopy

facebook icon twitter icon whatsapp icon telegram icon line icon copy

URL berhasil dicopy

Tim ini telah mengembangkan chip MWP terdepan di dunia yang mampu memproses dan menghitung sinyal elektronik analog ultracepat menggunakan optik. Kredit: Universitas Kota Hong Kong

Sebuah tim peneliti telah meluncurkan chip fotonik gelombang mikro yang secara signifikan meningkatkan pemrosesan sinyal elektronik analog, menawarkan kecepatan dan efisiensi energi 1.000 kali lebih besar daripada prosesor yang ada. Inovasi ini menjanjikan revolusi di berbagai sektor, termasuk komunikasi nirkabel dan kecerdasan buatan.

Sebuah tim peneliti yang dipimpin oleh Profesor Wang Cheng dari Departemen Teknik Elektro (EE) di City University of Hong Kong (CityUHK) telah mengembangkan chip fotonik gelombang mikro terkemuka di dunia yang mampu memproses dan menghitung sinyal elektronik analog ultracepat menggunakan teknologi optik.

Chip tersebut, yang 1.000 kali lebih cepat dan mengonsumsi lebih sedikit energi dibandingkan prosesor elektronik tradisional, memiliki beragam aplikasi, termasuk sistem komunikasi nirkabel 5/6G, sistem radar resolusi tinggi, kecerdasan buatan, visi komputer, dan pemrosesan gambar/video. .

Temuan penelitian tim dipublikasikan di jurnal ilmiah bergengsi Alami berjudul “Mesin Pemroses Fotonik Microwave Lithium Niobate Terintegrasi.” Ini merupakan penelitian kolaborasi dengan The Chinese University of Hong Kong (CUHK).

Mengatasi Tantangan Komunikasi Modern

Pesatnya perluasan jaringan nirkabel, Internet of Things, dan layanan berbasis cloud telah memberikan tuntutan yang signifikan terhadap sistem frekuensi radio yang mendasarinya. Teknologi Microwave Photonics (MWP), yang menggunakan komponen optik untuk menghasilkan, mentransmisikan, dan memanipulasi sinyal gelombang mikro, menawarkan solusi efektif untuk tantangan ini. Namun, sistem MWP terintegrasi mengalami kesulitan dalam mencapai pemrosesan sinyal analog berkecepatan sangat tinggi secara bersamaan dengan skala chip, fidelitas tinggi, dan integrasi daya rendah.

“Untuk mengatasi tantangan ini, tim kami mengembangkan sistem MWP yang menggabungkan konversi elektro-optik (EO) ultracepat dengan pemrosesan sinyal multifungsi low-loss pada satu chip terintegrasi, yang belum pernah dicapai sebelumnya,” jelas Profesor Wang.

Kinerja ini dimungkinkan oleh mesin pemrosesan MWP terintegrasi berdasarkan platform lithium niobate (LN) film tipis yang mampu melakukan tugas pemrosesan multiguna dan komputasi sinyal analog.

“Chip ini dapat melakukan komputasi analog berkecepatan tinggi dengan bandwidth pemrosesan ultrabroad 67 GHz dan akurasi komputasi yang sangat baik,” kata Feng Hanke, mahasiswa PhD EE dan penulis pertama makalah ini.

Pelopor Fotonik Lithium Niobate

Tim ini telah berdedikasi untuk meneliti platform fotonik LN terintegrasi selama beberapa tahun. Pada tahun 2018, rekan-rekan di Universitas Harvard dan laboratorium Nokia Bell mengembangkan modulator elektro-optik terintegrasi yang kompatibel dengan CMOS (semikonduktor oksida logam komplementer) pertama di dunia pada platform LN, yang meletakkan dasar bagi terobosan penelitian saat ini. LN disebut “silikon fotonik” karena pentingnya bagi fotonik, sebanding dengan silikon dalam mikroelektronika.

Pekerjaan mereka membuka bidang penelitian baru, yaitu LN microwave photonics, yang memungkinkan chip fotonik gelombang mikro dengan ukuran kompak, fidelitas sinyal tinggi, dan latensi rendah; itu juga mewakili mesin pemrosesan dan komputasi elektronik analog skala chip.

Referensi: “Mesin pengolah fotonik gelombang mikro litium niobate terintegrasi” oleh Hanke Feng, Tong Ge, Xiaoqing Guo, Benshan Wang, Yiwen Zhang, Zhaoxi Chen, Sha Zhu, Ke Zhang, Wenzhao Sun, Chaoran Huang, Yixuan Yuan dan Cheng Wang, 28 Februari 2024, Alami.
DOI: 10.1038/s41586-024-07078-9

Penulis pertama makalah ini adalah Feng Hanke dan Ge Tong (cendekiawan EE). Profesor Wang adalah penulis koresponden. Penulis kontributor lainnya termasuk Dr. Guo Xiaoqing, lulusan PhD EE; Chen Zhaoxi, Dr. Zhang Ke, Dr. Zhu Sha (juga di Universitas Teknologi Beijing), Dr. Sun Wenzhao (sekarang di CityUHK (Dongguan)), EE postdocs; dan Zhang Yiwen, mahasiswa PhD EE; dan kolaborator (Wang Benshan, Profesor Huang Chaoran, dan Profesor Yuan Yixuan) dari CUHK.

NewsRoom.id

Berita Terkait

Sapi bersendawa? Para ilmuwan mengembangkan pakan baru yang dapat memotong emisi metana
Superman DC Studios akan melambung secara global setelah kemenangan Hukum Warner Bros.
Cara meluncurkan karier Anda di industri ganja
Semuanya ada di kepala Anda? Penelitian baru menantang keyakinan lama tentang puasa
Pertama dalam 45 tahun: para ilmuwan menemukan subtipe baru dari penyakit Castleman
Zuckerberg Shutters Schools for Communities Color Saat Trump Mengejek Dei
Marina B. Perhiasan Membuka Toko di New York City
Hidden Mars: Siderite Discovery dan 110 Amazing Frames

Berita Terkait

Sabtu, 26 April 2025 - 11:13 WIB

Sapi bersendawa? Para ilmuwan mengembangkan pakan baru yang dapat memotong emisi metana

Sabtu, 26 April 2025 - 09:09 WIB

Superman DC Studios akan melambung secara global setelah kemenangan Hukum Warner Bros.

Sabtu, 26 April 2025 - 07:05 WIB

Cara meluncurkan karier Anda di industri ganja

Sabtu, 26 April 2025 - 06:03 WIB

Semuanya ada di kepala Anda? Penelitian baru menantang keyakinan lama tentang puasa

Sabtu, 26 April 2025 - 05:01 WIB

Pertama dalam 45 tahun: para ilmuwan menemukan subtipe baru dari penyakit Castleman

Sabtu, 26 April 2025 - 00:53 WIB

Marina B. Perhiasan Membuka Toko di New York City

Jumat, 25 April 2025 - 23:51 WIB

Hidden Mars: Siderite Discovery dan 110 Amazing Frames

Jumat, 25 April 2025 - 22:49 WIB

Sel paru -paru ini memutuskan siapa yang selamat dari Covid

Berita Terbaru

Headline

Cara meluncurkan karier Anda di industri ganja

Sabtu, 26 Apr 2025 - 07:05 WIB