Terobosan ini membuka jalan bagi desain dan konstruksi struktur yang lebih kompleks.
Para insinyur nano telah menciptakan quasicrystals—struktur material yang menarik secara ilmiah dan menjanjikan secara teknologi—dari penggunaan nanopartikel DNAmolekul yang mengkode kehidupan.
IKLAN
GULIR UNTUK MELANJUTKAN KONTEN
Tim yang dipimpin oleh para peneliti di Northwestern University, University of Michigan dan Center for Cooperative Research in Biomaterials di San Sebastian, Spanyol, melaporkan hasilnya di Bahan Alami.
Sifat Unik Kuasikristal
Tidak seperti kristal biasa, yang ditentukan oleh struktur berulang, pola pada quasicrystal tidak berulang. Kuasikristal yang terbuat dari atom dapat memiliki sifat yang luar biasa—misalnya, menyerap panas dan cahaya secara berbeda, menunjukkan sifat elektronik yang tidak biasa seperti menghantarkan listrik tanpa hambatan, atau memiliki permukaan yang sangat keras atau sangat halus.
Insinyur sedang belajar skala nano perakit sering memandang nanopartikel sebagai semacam 'perancang atom,' yang memberikan tingkat kontrol baru terhadap bahan sintetis. Salah satu tantangannya adalah mengarahkan partikel untuk berkumpul menjadi struktur yang diinginkan dengan kualitas yang berguna, dan dalam membangun quasicrystal rakitan DNA pertama ini, tim memasuki batas baru dalam desain material nano.
Merintis Perakitan DNA dalam Bahan Nano
“Keberadaan quasicrystals telah menjadi teka-teki selama beberapa dekade, dan penemuan mereka dianugerahi Hadiah Nobel,” kata Chad Mirkin, Profesor Kimia George B. Rathmann di Universitas Barat Laut dan rekan penulis penelitian ini. “Meskipun saat ini hanya ada sedikit contoh yang diketahui, ditemukan di alam atau melalui rute yang tidak disengaja, penelitian kami mengungkap misteri pembentukannya dan yang lebih penting menunjukkan bagaimana kita dapat memanfaatkan sifat DNA yang dapat diprogram untuk merancang dan merakit quasicrystals dengan sengaja.”
DNA: Alat Desainer untuk Nanopartikel
Kelompok Mirkin dikenal menggunakan DNA sebagai lem desain untuk merekayasa pembentukan kristal koloid yang terbuat dari nanopartikel, dan kelompok Luis Liz-Marzán, Profesor Ikerbasque di Pusat Penelitian Koperasi Biomaterial Spanyol, mampu menghasilkan nanopartikel yang mungkin terbentuk. . quasicrystals dalam kondisi yang tepat.
Tim fokus pada bentuk bipiramida—pada dasarnya dua piramida yang menempel satu sama lain di dasarnya. Kelompok Liz-Marzán mencoba berbagai jumlah sisi serta meremas dan meregangkan bentuknya. Wenjie Zhou dan Haixin Lin, mahasiswa doktoral kimia di Northwestern pada saat penelitian ini dilakukan, menggunakan untaian DNA yang dikodekan untuk mengenali satu sama lain guna memprogram partikel untuk berkumpul menjadi quasicrystals.
Secara mandiri, kelompok Sharon Glotzer, Ketua Teknik Kimia UM Anthony C. Lembke, telah melakukan simulasi bipiramida dengan jumlah sisi yang berbeda. Yein Lim dan Sangmin Lee, mahasiswa doktoral teknik kimia di UM, menemukan bahwa decahedra—bipiramida pentagonal bersisi 10—akan membentuk kuasikristal dalam kondisi tertentu, dan dengan dimensi relatif yang tepat.
Pada tahun 2009, tim Glotzer memperkirakan nanopartikel quasicrystal berlapis pertama, bukan dari bipiramida tetapi dari tetrahedra—piramida tunggal dengan empat sisi segitiga seperti dadu D4. Karena lima tetrahedra hampir bisa membuat sejenis decahedron, katanya decahedron adalah pilihan cerdas untuk membuat quasicrystal.
“Dalam simulasi kuasikristal asli kami, tetrahedra disusun menjadi decahedra dengan celah yang sangat kecil di antara tetrahedra. “Di sini, celah tersebut akan diisi oleh DNA, jadi masuk akal jika decahedra juga bisa membuat quasicrystals,” kata Glotzer, salah satu penulis studi tersebut.
Sinergi Teoritis dan Eksperimental
Melalui kombinasi teori dan eksperimen, ketiga kelompok peneliti membuat partikel decahedron menjadi quasicrystals, yang dikonfirmasi oleh pencitraan mikroskop elektron di Northwestern dan hamburan sinar-X yang dilakukan di Argonne National Laboratory.
“Melalui keberhasilan rekayasa quasicrystals koloidal, kami telah mencapai tonggak penting dalam bidang nanosains,” kata Liz-Marzán, salah satu penulis studi tersebut. “Pekerjaan kami tidak hanya menyoroti desain dan fabrikasi struktur skala nano yang kompleks, namun juga membuka banyak kemungkinan untuk material canggih dan aplikasi nanoteknologi inovatif.”
Strukturnya menyerupai susunan bunga mawar dalam lingkaran konsentris, bentuk 10 sisinya menciptakan simetri 12 kali lipat dalam lapisan 2D yang ditumpuk secara berkala. Struktur bertumpuk ini, juga terlihat pada quasicrystals yang terbuat dari tetrahedra, disebut quasicrystal aksial. Namun tidak seperti kebanyakan quasicrystal aksial, pola ubin dari lapisan quasicrystal baru tidak berulang secara identik dari satu lapisan ke lapisan berikutnya. Sebaliknya, sebagian besar ubinnya berbeda, secara acak—dan sedikit ketidakteraturan ini menambah stabilitas.
Referensi: “Kristal kuasi koloidal rekayasa DNA” oleh Wenjie Zhou, Yein Lim, Haixin Lin, Sangmin Lee, Yuanwei Li, Ziyin Huang, Jingshan S. Du, Byeongdu Lee, Shunzhi Wang, Ana Sanchez-Iglesias, Marek Grzelczak, Luis M. Liz-Marzan, Sharon C. Glotzer dan Chad A. Mirkin, 2 November 2023, Bahan Alami.
DOI: 10.1038/s41563-023-01706-x
Penelitian ini didanai oleh Kantor Penelitian Ilmiah Angkatan Udara AS dan Departemen Energi AS, Kementerian Sains dan Inovasi Spanyol, dan Unit Program Keunggulan Maria de Maeztu dari Badan Penelitian Negara Spanyol. Proyek ini juga mengandalkan sumber daya di Extreme Science and Engineering Discovery Environment, NUANCE di Northwestern University, dan sumber daya komputasi di UM.
NewsRoom.id